Somatic gene amplification during Drosophila oogenesis
نویسندگان
چکیده
منابع مشابه
Regulation of pattern formation and gene amplification during Drosophila oogenesis by the miR-318 microRNA.
Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. mir-318 maternal loss-of-function mutants were female-sterile and laid eggs with abnormal morphology. Removal of mir-318 disrupted the dorsal-anterior follicle cell...
متن کاملAxis formation during Drosophila oogenesis.
Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of th...
متن کاملSymmetry breaking during Drosophila oogenesis.
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first sy...
متن کاملAmplification of genes for chorion proteins during oogenesis in Drosophila melanogaster.
The endochorion and exochorion of Drosophila eggs are synthesized by the ovarian follicle cells during a brief period of about 5 hr. In this terminal phase of egg chamber development, the structural genes for several abundant chorion proteins are expressed at high levels according to a temporally regulated program. The female-sterile mutation ocelliless maps at the site of the genes for two of ...
متن کاملNotch Signaling during Oogenesis in Drosophila melanogaster
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism that is required for embryonic development, cell fate specification, and stem cell maintenance. Discovered and studied initially in Drosophila melanogaster, the Notch pathway is conserved and functionally active throughout the animal kingdom. In this paper, we summarize the biochemical mechanisms of Not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1982
ISSN: 0028-0836,1476-4687
DOI: 10.1038/296806a0